Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 855
Filtrar
1.
CNS Neurosci Ther ; 30(2): e14551, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421089

RESUMO

BACKGROUND: Post-stroke cognitive impairment (PSCI) is a major source of morbidity and mortality after stroke, but the pathological mechanisms remain unclear. Previous studies have demonstrated that the CX3CR1 receptor plays a crucial role in maintaining an early protective microenvironment after stroke, but whether it persistently influences cognitive dysfunction in the chronic phase requires further investigation. METHODS: Mouse was used to establish a middle cerebral artery occlusion (MCAO)/reperfusion model to study PSCI. Cognitive function was assessed by the Morris water maze (MWM) and the novel object recognition test. Neurogenesis was assessed by immunofluorescence staining with Nestin+ /Ki67+ and DCX+ /BrdU+ double-positive cells. The cerebral damage was monitored by [18 F]-DPA-714 positron emission tomography, Nissel, and TTC staining. The pyroptosis was histologically, biochemically, and electron microscopically examined. RESULTS: Upon MCAO, at 28 to 35 days, CX3CR1 knockout (CX3CR1-/- ) mice had better cognitive behavioral performance both in MWM and novel object recognition test than their CX3CR1+/- counterparts. Upon MCAO, at 7 days, CX3CR1-/- mice increased the numbers of Nestin+ /Ki67+ and DCX+ /BrdU+ cells, and meanwhile it decreased the protein expression of GSDMD, NLRP3 inflammasome subunit, caspase-1, mature IL-1ß/IL-18, and p-P65 in the hippocampus as compared with CX3CR1+/- mice. In addition, CX3CR1-/- mice could reverse infarct volume in the hippocampus region post-stroke. CONCLUSION: Our study demonstrated that CX3CR1 gene deletion was beneficial to PSCI recovery. The mechanism might lie in inhibited pyroptosis and enhanced neurogenesis. CX3CR1 receptor may serve as a therapeutic target for improving the PSCI.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Microglia/patologia , Nestina/metabolismo , AVC Isquêmico/patologia , Piroptose , Bromodesoxiuridina/metabolismo , Antígeno Ki-67/metabolismo , Acidente Vascular Cerebral/patologia , Cognição , Infarto da Artéria Cerebral Média/patologia
2.
Cell Biochem Funct ; 42(2): e3958, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396357

RESUMO

Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.


Assuntos
Acetilcisteína , Sobrecarga de Ferro , Oligopeptídeos , Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Caspases/metabolismo , Claudinas/genética , Giro Denteado/metabolismo , Giro Denteado/patologia , Dextranos/metabolismo , Dextranos/farmacologia , Regulação para Baixo , Glutationa/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Ferro/metabolismo , Ferro/farmacologia , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Nestina/genética , Nestina/metabolismo , Nestina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Regulação para Cima , Oligopeptídeos/farmacologia , Heme Oxigenase-1/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo
3.
Hear Res ; 443: 108962, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295585

RESUMO

Nestin expression is associated with pluripotency. Growing evidence suggests nestin is involved in hair cell development. The objective of this study was to investigate the morphology and role of nestin-expressing cells residing in the early postnatal murine inner ear. A lineage-tracing nestin reporter mouse line was used to further characterize these cells. Their cochleae and vestibular organs were immunostained and whole-mounted for cell counting. We found Nestin-expressing cells present in low numbers throughout the inner ear. Three morphotypes were observed: bipolar, unipolar, and globular. Mitotic activity was noted in nestin-expressing cells in the cochlea, utricle, saccule, and crista. Nestin-expressing cell characteristics were then observed after hair cell ablation in two mouse models. First, a reporter model demonstrated nestin expression in a significantly higher proportion of hair cells after hair cell ablation than in control cochleae. However, in a lineage tracing nestin reporter mouse, none of the new hair cells which repopulated the organ of Corti after hair cell ablation expressed nestin, nor did the nestin-expressing cells change in morphotype. In conclusion, Nestin-expressing cells were identified in the cochlea and vestibular organs. After hair cell ablation, nestin-expressing cells did not react to the insult. However, a small number of nestin-expressing cells in all inner ear tissues exhibited mitotic activity, supporting progenitor cell potential, though perhaps not involved in hair cell regeneration.


Assuntos
Cóclea , Vestíbulo do Labirinto , Animais , Camundongos , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Nestina/genética , Nestina/metabolismo , Sáculo e Utrículo/metabolismo , Vestíbulo do Labirinto/metabolismo
4.
Exp Neurol ; 374: 114700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272160

RESUMO

Wound healing after closed-head injury is a significant medical issue. However, conventional models of focal traumatic brain injury, such as fluid percussion injury and controlled cortical impact, employ mechanical impacts on the exposed cerebral cortex after craniotomy. These animal models are inappropriate for studying gliosis, as craniotomy itself induces gliosis. To address this, we developed a closed-head injury model and named "photo injury", which employs intense light illumination through a thinned-skull cranial window. Our prior work demonstrated that the gliosis of focal cerebral lesion after the photo injury does not encompass artificial gliosis and comprises two distinct reactive astrocyte subpopulations. The reactive astrocytes accumulated in the perilesional recovery area actively proliferate and express Nestin, a neural stem cell marker, while those in distal regions do not exhibit these traits. The present study investigated the role of perilesional reactive astrocytes (PRAs) in wound healing using the ablation of reactive astrocytes by the conditional knockout of Stat3. The extensive and non-selective ablation of reactive astrocytes in Nestin-Cre:Stat3f/f mice resulted in an exacerbation of injury, marked by increased inflammation and BBB disruption. On the other hand, GFAP-CreERT2:Stat3f/f mice exhibited the partial and selective ablation of the PRAs, while their exacerbation of injury was at the same extent as in Nestin-Cre:Stat3f/f mice. The comparison of these two mouse strains indicates that the PRAs are an essential astrocyte component for wound healing after closed-head injury, and their anti-inflammatory and regenerative functions are significantly affected even by incomplete accumulation. In addition, the reporter gene expression in the PRAs by GFAP-CreERT2 indicated a substantial elimination of these cells and an absence of differentiation into other cell types, despite Nestin expression, after wound healing. Thus, the accumulation and subsequent elimination of PRA are proposed as promising diagnostic and therapeutic avenues to bolster wound healing after closed-head injury.


Assuntos
Lesões Encefálicas , Traumatismos Cranianos Fechados , Camundongos , Animais , Astrócitos/metabolismo , Nestina/metabolismo , Gliose/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Cicatrização , Lesões Encefálicas/metabolismo , Traumatismos Cranianos Fechados/patologia , Inflamação/metabolismo
5.
CNS Neurosci Ther ; 30(1): e14485, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37789668

RESUMO

BACKGROUND: Patients with brain tumors, especially pediatric brain tumors such as cerebellar medulloblastoma, always suffer from the severe side effects of radiotherapy. Regeneration of neural cells in irradiation-induced cerebellar injury has been reported, but the underlying mechanism remains elusive. METHODS: We established an irradiation-induced developing cerebellum injury model in neonatal mice. Microarray, KEGG analysis and semi in vivo slice culture were performed for mechanistic study. RESULTS: Nestin-expressing progenitors (NEPs) but not granule neuron precursors (GNPs) were resistant to irradiation and able to regenerate after irradiation. NEPs underwent less apoptosis but similar DNA damage following irradiation compared with GNPs. Subsequently, they started to proliferate and contributed to granule neurons regeneration dependent on the sonic hedgehog (Shh) pathway. In addition, irradiation increased Shh ligand provided by Purkinje cells. And microglia accumulated in the irradiated cerebellum producing more IFN-γ, which augmented Shh ligand production to promote NEP proliferation. CONCLUSIONS: NEP was radioresistant and regenerative. IFN-γ was increased post irradiation to upregulate Shh ligand, contributing to NEP regeneration. Our study provides insight into the mechanisms of neural cell regeneration in irradiation injury of the developing cerebellum and will help to develop new therapeutic targets for minimizing the side effects of radiotherapy for brain tumors.


Assuntos
Neoplasias Cerebelares , Proteínas Hedgehog , Humanos , Criança , Camundongos , Animais , Nestina/metabolismo , Ligantes , Camundongos Transgênicos , Proteínas Hedgehog/metabolismo , Cerebelo , Regeneração Nervosa , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/metabolismo
6.
Inflamm Res ; 73(1): 131-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091015

RESUMO

OBJECTIVE: Proinflammatory necroptosis is the main pathological mechanism of ischemic stroke. Homer scaffolding protein 1 (Homer1) is a postsynaptic scaffolding protein that exerts anti-inflammatory effects in most central nervous system diseases. However, the relationship between Homer1 and proinflammatory necroptosis in ischemic stroke remains unclear. AIM: This study aimed to investigate the role of Homer1 in ischemia-induced necroptosis. METHODS: C57BL/6 mice were used to establish a model of permanent middle cerebral artery occlusion model (pMCAO). Homer1 knockdown mice were generated using adeno-associated virus (AAV) infection to explore the role of Homer1 and its impact on necroptosis in pMCAO. Finally, Homer1 protein was stereotaxically injected into the ischemic cortex of Homer1flox/flox/Nestin-Cre +/- mice, and the efficacy of Homer1 was investigated using behavioral assays and molecular biological assays to explore potential mechanisms. RESULTS: Homer1 expression peaked at 8 h in the ischemic penumbral cortex after pMCAO and colocalized with neurons. Homer1 knockdown promoted neuronal death by enhancing necroptotic signaling pathways and aggravating ischemic brain damage in mice. Furthermore, the knockdown of Homer1 enhanced the expression of proinflammatory cytokines. Moreover, injection of Homer1 protein reduced necroptosis-induced brain injury inhibited the expression of proinflammatory factors, and ameliorated the outcomes in the Homer1flox/flox/Nestin-Cre+/- mice after pMCAO. CONCLUSIONS: Homer1 ameliorates ischemic stroke by inhibiting necroptosis-induced neuronal damage and neuroinflammation. These data suggested that Homer1 is a novel regulator of neuronal death and neuroinflammation.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , AVC Isquêmico/complicações , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Nestina/metabolismo , Nestina/farmacologia , Doenças Neuroinflamatórias , Necroptose , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/patologia , Neurônios/patologia , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Proteínas de Arcabouço Homer/farmacologia
7.
J Endod ; 50(1): 64-73.e4, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866800

RESUMO

INTRODUCTION: Stem cell-based dental pulp regeneration has been extensively studied, mainly focusing on exploiting dental stem cells' osteogenic and angiogenic potentials. Dental stem cells' neurogenic role is often overlooked. Stem cells from apical papilla (SCAPs), originating from the neural crest and capable of sphere formation, display potent neurogenic capacity. This study aimed to investigate the interactions of neuronally induced stem cells from apical papilla (iSCAP) spheres, SCAPs, and human umbilical vascular endothelial cells (HUVECs) on vasculogenesis and neurogenesis. METHODS: SCAPs were isolated and characterized using flow cytometry and multilineage differentiation assays. SCAP monolayer culture and spheres were neuronally induced by a small molecule neural induction medium, and the neural gene expression and neurite formation at days 0, 3, and 7 were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and using phase-contrast light and fluorescence microscopy. Direct coculture or pulp-on-chip was used to investigate iSCAP sphere interaction with SCAPs and HUVECs. RT-qPCR, fluorescence microscopy, and immunostaining with ß-tubulin III, alpha-smooth muscle actin, and CD31 were used to study neural gene expression, neurite formation, and neurovascular cell interactions. RESULTS: Neural induction medium with small molecules rapidly induced SCAP differentiation toward neural-like cells. Gene expression of Nestin, ß-tubulin III, microtubule-associated protein 2, neuron-specific enolase, and NeuN was higher in iSCAP spheres than in iSCAPs. iSCAP spheres formed more and longer neurites compared with iSCAPs. iSCAP sphere, HUVEC, and SCAP direct coculture significantly enhanced vessel formation along with up-regulated VEGF (P < .001) and multiple neural markers, such as Nestin (P < .01), microtubule-associated protein 2 (P < .001), S100 (P < .001), and NG2 (P < .001). iSCAP spheres, SCAPs, and HUVECs cultured in a pulp-on-chip system promoted endothelial and neural cell migration toward each other and alpha-smooth muscle actin-positive and CD31-positive cells assembling for the vascular constitution. CONCLUSIONS: iSCAP-formed spheres interact with SCAPs and HUVECs, promoting vasculogenesis and neurogenesis.


Assuntos
Polpa Dentária , Células Endoteliais , Humanos , Nestina/metabolismo , Papila Dentária , Tubulina (Proteína)/metabolismo , Actinas/metabolismo , Regeneração , Células-Tronco/fisiologia , Diferenciação Celular , Neurogênese , Células Cultivadas , Proteínas Associadas aos Microtúbulos/metabolismo , Osteogênese
8.
J Exp Clin Cancer Res ; 42(1): 317, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008717

RESUMO

BACKGROUND: BRAF-mutant melanoma patients benefit from the combinatorial treatments with BRAF and MEK inhibitors. However, acquired drug resistance strongly limits the efficacy of these targeted therapies in time. Recently, many findings have underscored the involvement of microRNAs as main drivers of drug resistance. In this context, we previously identified a subset of oncomiRs strongly up-regulated in drug-resistant melanomas. In this work, we shed light on the molecular role of two as yet poorly characterized oncomiRs, miR-4443 and miR-4488. METHODS: Invasion and migration have been determined by wound healing, transwell migration/invasion assays and Real Time Cell Analysis (RTCA) technology. miR-4488 and miR-4443 have been measured by qRT-PCR. Nestin levels have been tested by western blot, confocal immunofluorescence, immunohistochemical and flow cytometry analyses. RESULTS: We demonstrate that the two oncomiRs are responsible for the enhanced migratory and invasive phenotypes, that are a hallmark of drug resistant melanoma cells. Moreover, miR-4443 and miR-4488 promote an aberrant cytoskeletal reorganization witnessed by the increased number of stress fibers and cellular protrusions-like cancer cell invadopodia. Mechanistically, we identified the intermediate filament nestin as a molecular target of both oncomiRs. Finally, we have shown that nestin levels are able to predict response to treatments in melanoma patients. CONCLUSIONS: Altogether these findings have profound translational implications in the attempt i) to develop miRNA-targeting therapies to mitigate the metastatic phenotypes of BRAF-mutant melanomas and ii) to identify novel biomarkers able to guide clinical decisions.


Assuntos
Melanoma , MicroRNAs , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , MicroRNAs/metabolismo , Nestina/genética , Nestina/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
9.
Front Biosci (Landmark Ed) ; 28(9): 193, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37796710

RESUMO

BACKGROUND: Currently, there remains an incomplete view of cancer stem cells (CSCs) in solid tumours. METHODS: We studied a panel of putative CSC surface markers (ALDH1A1, ABCG2, CD44v7/8, CD44v10, CD133, CD271, and Nestin) in 40 established melanoma cell lines and four early-passage melanoma strains by flow cytometry. We additionally examined 40 formalin-fixed paraffin-embedded melanoma tissues using immunofluorescence microscopy. This was compared with their expression in healthy skin, normal differentiated melanocytes and fibroblasts. RESULTS: Most of the putative CSC markers were expressed by both melanoma cell lines and tissues. When present, these proteins were expressed by the majority of cells in the population. However, the expression of these markers by cells in healthy skin sections, normal differentiated melanocytes, and fibroblasts revealed that differentiated non-malignant cells also expressed CSC markers indicating that they lack of specificity for CSCs. Culturing cell lines under conditions more characteristic of the tumour microenvironment upregulated CSC marker expressions in a proportion of cell lines, which correlated with improved cell growth and viability. CONCLUSIONS: The testing of melanoma cell lines (n = 40), early-passage cell strains (n = 4), and melanoma tissues (n = 40) showed that several putative CSC markers (ALDH1A1, ABCG2, CD44v7/8, CD44v10, CD133, CD271, and Nestin) are commonly present in a large proportion of melanoma cells in vitro and in situ. Further, we showed that these putative markers lack specificity for CSCs because they are also expressed in differentiated non-malignant cell types (melanocytes, fibroblasts, and skin), which could limit their use as therapeutic targets. These data are consistent with the emerging notion of CSC plasticity and phenotype switching within cancer cell populations.


Assuntos
Biomarcadores Tumorais , Melanoma , Humanos , Nestina/metabolismo , Biomarcadores Tumorais/genética , Antígenos CD/metabolismo , Melanoma/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Adapaleno/metabolismo , Antígeno AC133/metabolismo , Microambiente Tumoral
10.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445785

RESUMO

Stem cells from the apical papilla (SCAPs) are used to regulate the microenvironment of nerve defects. KDM6B, which functions as an H3K27me3 demethylase, is known to play a crucial role in neurogenesis. However, the mechanism by which KDM6B influences the neurogenesis potential of SCAPs remains unclear. We evaluated the expression of neural markers in SCAPs by using real-time RT-PCR and immunofluorescence staining. To assess the effectiveness of SCAP transplantation in the SCI model, we used the BBB scale to evaluate motor function. Additionally, toluidine blue staining and Immunofluorescence staining of NCAM, NEFM, ß-III-tubulin, and Nestin were used to assess nerve tissue remodeling. Further analysis was conducted through Microarray analysis and ChIP assay to study the molecular mechanisms. Our results show that KDM6B inhibits the expression of NeuroD, TH, ß-III tubulin, and Nestin. In vivo studies indicate that the SCAP-KDM6Bsh group is highly effective in restoring spinal cord structure and motor function in rats suffering from SCI. Our findings suggest that KDM6B directly binds to the HES1 promoter via regulating H3K27me3 and HES1 expression. In conclusion, our study can help understand the regulatory role of KDM6B in neurogenesis and provide more effective treatments for nerve injury.


Assuntos
Histonas , Tubulina (Proteína) , Ratos , Animais , Histonas/metabolismo , Nestina/genética , Nestina/metabolismo , Diferenciação Celular , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Células-Tronco/metabolismo , Neurogênese , Papila Dentária/metabolismo , Células Cultivadas , Osteogênese
11.
Am J Physiol Cell Physiol ; 325(2): C496-C508, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458435

RESUMO

Fibroblast progenitor cells migrate to the endocardial region during cardiogenesis, and the migration of ventricular fibroblasts to the ischemically damaged region of the infarcted adult heart is a seminal event of reparative fibrosis. The intermediate filament protein nestin is implicated in cell migration and expression identified in a subpopulation of scar-derived myofibroblasts. The present study tested the hypothesis that fibroblast progenitor cells express nestin, and the intermediate filament protein drives the migratory phenotype of ventricular fibroblasts. Transcription factor 21 (Tcf21)- and Wilms tumor 1 (WT1)-fibroblast progenitor cells identified in the epicardial/endocardial regions of the E12.5- to E13.5-day embryonic mouse heart predominantly expressed nestin. Nuclear Tcf21/WT1 staining was identified in neonatal rat ventricular fibroblasts (NNVFbs), and a subpopulation coexpressed nestin. Nuclear Tcf21/WT1 expression persisted in adult rat ventricular fibroblasts, whereas nestin protein levels were downregulated. Nestin-expressing NNVFbs exhibited a unique phenotype as the subpopulation was refractory to cell cycle reentry in response to selective stimuli. Nestin(-)- and nestin(+)-scar-derived rat myofibroblasts plated in Matrigel unmasked a migratory phenotype characterized by the de novo formation of lumen-like structures. The elongated membrane projections emanating from scar myofibroblasts delineating the boundary of lumen-like structures expressed nestin. Lentiviral short-hairpin RNA (shRNA)-mediated nestin depletion inhibited the in vitro migratory response of NNVFbs as the wound radius was significantly larger compared with NNVFbs infected with the empty lentivirus. Thus, nestin represents a marker of embryonic Tcf21/WT1(+)-fibroblast progenitor cells. The neonatal rat heart contains a distinct subpopulation of nestin-immunoreactive Tcf21/WT1(+) fibroblasts refractory to cell cycle reentry, and the intermediate filament protein may preferentially facilitate ventricular fibroblast migration during physiological/pathological remodeling.NEW & NOTEWORTHY Tcf21/WT1(+)-fibroblast progenitor cells of the embryonic mouse heart predominantly express the intermediate filament protein nestin. A subpopulation of Tcf21/WT1(+)-neonatal rat ventricular fibroblasts express nestin and are refractory to selective stimuli influencing cell cycle reentry. Scar-derived myofibroblasts plated in Matrigel elicit the formation of lumen-like structures characterized by the appearance of nestin(+)-membrane projections. Lentiviral shRNA-mediated nestin depletion in a subpopulation of neonatal rat ventricular fibroblasts suppressed the migratory response following the in vitro scratch assay.


Assuntos
Cicatriz , Fibroblastos , Ratos , Camundongos , Animais , Nestina/genética , Nestina/metabolismo , Cicatriz/metabolismo , Movimento Celular , Fibroblastos/metabolismo , RNA Interferente Pequeno/metabolismo
12.
ASN Neuro ; 15: 17590914231183272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37345290

RESUMO

SUMMARY STATEMENT: Retinal Müller cells secrete extracellular vesicles that can be captured by other Müller cells. In response to a signal that may be deleterious for the retina, Müller glia-derived extracellular vesicles spread instructions to induce gene expression changes in other cells.


Assuntos
Vesículas Extracelulares , N-Metilaspartato , Nestina/metabolismo , Neuroglia , Retina/metabolismo , Células Ependimogliais/metabolismo , Proliferação de Células/fisiologia
13.
Stem Cell Reports ; 18(7): 1482-1499, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37352848

RESUMO

The adult subventricular zone (SVZ) is a neurogenic niche that continuously produces newborn neurons. Here we show that serine racemase (SR), an enzyme that catalyzes the racemization of L-serine to D-serine and vice versa, affects neurogenesis in the adult SVZ by controlling de novo fatty acid synthesis. Germline and conditional deletion of SR (nestin precursor cells) leads to diminished neurogenesis in the SVZ. Nestin-cre+ mice showed reduced expression of fatty acid synthase and its substrate malonyl-CoA, which are involved in de novo fatty acid synthesis. Global lipidomic analyses revealed significant alterations in different lipid subclasses in nestin-cre+ mice. Decrease in fatty acid synthesis was mediated by phospho Acetyl-CoA Carboxylase that was AMP-activated protein kinase independent. Both L- and D-serine supplementation rescued defects in SVZ neurogenesis, proliferation, and levels of malonyl-CoA in vitro. Our work shows that SR affects adult neurogenesis in the SVZ via lipid metabolism.


Assuntos
Ventrículos Laterais , Neurogênese , Camundongos , Animais , Ventrículos Laterais/metabolismo , Nestina/metabolismo , Neurogênese/fisiologia , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos
14.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298126

RESUMO

Reactive gliosis is a hallmark of chronic degenerative diseases of the retina. As gliosis involves macroglia, we investigated their gliotic response to determine the role of S100ß and intermediate filaments (IFs) GFAP, vimentin, and nestin during tissue repair in a laser-induced model of retinal degeneration. We validated the results with human retinal donor samples. Experiments were performed in zebrafish and mice using an argon laser (532 nm) to induce focal lesions in the outer retina. At different time points following injury induction, the kinetics of retinal degeneration and regeneration were assessed using hematoxylin and eosin staining (H&E). Immunofluorescence was performed to evaluate Müller cell (GS) and astrocyte (GFAP) injury response and to distinguish between both cell types. Additionally, staining was performed in human retinal sections containing drusen. Focal laser treatment elevated the expression of gliotic markers in the area of the damage, which was associated with increased expression of S100ß, GFAP, vimentin, and nestin in mice and humans. In zebrafish, we detected S100ß at the first time point, but not GFAP or nestin. Double-positive cells with the selected glia markers were detected in all models. However, in zebrafish, no double-positive GFAP/GS cells were found on days 10 and 17, nor were S100ß/GS double-positive cells found on day 12. Macroglia cells showed a different pattern in the expression of IFs in degenerative and regenerative models. In particular, S100ß may prove to be a target for suppressing chronic gliosis in retinal degeneration.


Assuntos
Degeneração Retiniana , Animais , Camundongos , Humanos , Degeneração Retiniana/patologia , Astrócitos/metabolismo , Vimentina/genética , Vimentina/metabolismo , Nestina/genética , Nestina/metabolismo , Gliose/patologia , Peixe-Zebra/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Retina/metabolismo , Neuroglia/metabolismo , Lasers , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
15.
Eur Rev Med Pharmacol Sci ; 27(8): 3351-3362, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140285

RESUMO

OBJECTIVE: Animal studies and clinical trials demonstrated the effectiveness of a combination of transplanted bone marrow stromal cells (BMSC) and electroacupuncture (EA) treatment in improving neurological deficits. However, the ability of the BMSC-EA treatment to enhance brain repair processes or the neuronal plasticity of BMSC in ischemic stroke model is unclear. The purpose of this study was to investigate the neuroprotective effects and neuronal plasticity of BMSC transplantation combined with EA in ischemic stroke. MATERIALS AND METHODS: A male Sprague-Dawley (SD) rat middle cerebral artery occlusion (MCAO) model was used. Intracerebral transplantation of BMSC, transfected with lentiviral vectors expressing green fluorescent protein (GFP), was performed using a stereotactic apparatus after modeling. MCAO rats were treated with BMSC injection alone or in combination with EA. After the treatment, proliferation and migration of BMSC were observed in different groups by fluorescence microscopy. Quantitative real-time PCR (qRT-PCR), Western blotting, and immunohistochemistry were performed to examine changes in the levels of neuron-specific enolase (NSE) and nestin in the injured striatum. RESULTS: Epifluorescence microscopy revealed that most BMSC in the cerebrum were lysed; few transplanted BMSC survived, and some living cells migrated to areas around the lesion site. NSE was overexpressed in the striatum of MCAO rats, illustrating the neurological deficits caused by cerebral ischemia-reperfusion. The combination of BMSC transplantation and EA attenuated the expression of NSE, indicating nerve injury repair. Although the qRT-PCR results showed that BMSC-EA treatment elevated nestin RNA expression, less robust responses were observed in other tests. CONCLUSIONS: Our results show that the combination treatment significantly improved restoration of neurological deficits in the animal stroke model. However, further studies are required to see if EA could promote the rapid differentiation of BMSC into neural stem cells in the short term.


Assuntos
Isquemia Encefálica , Eletroacupuntura , AVC Isquêmico , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Ratos Sprague-Dawley , AVC Isquêmico/metabolismo , Nestina/metabolismo , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , Células da Medula Óssea , Células Estromais/metabolismo , Transplante de Medula Óssea/métodos
16.
Sci Rep ; 13(1): 5460, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015965

RESUMO

Pericytes are perivascular cells related to vessel structure and angiogenesis that can interact with neoplastic cells, interfering with cancer progression and outcomes. This study focused on the characterization of pericytes in oral squamous cell carcinoma (OSCC) using clinical samples and a transgenic mouse model of oral carcinogenesis. Nestin-/NG2+ (type-1) and nestin+/NG2+ (type-2) pericytes were analyzed by direct fluorescence after induction of oral carcinogenesis (4-nitroquinoline-1-oxide). Gene expression of neuron glial antigen-2 (NG2), platelet-derived growth factor receptor beta (PDGFR-ß), and cluster of differentiation 31 (CD31) was examined in human OSCC tissues. The protein expression of von Willebrand factor and NG2 was assessed in oral leukoplakia (i.e., oral potentially malignant disorders) and OSCC samples. Additionally, clinicopathological aspects and survival data were correlated and validated by bioinformatics using The Cancer Genome Atlas (TCGA). Induction of carcinogenesis in mice produced an increase in both NG2+ pericyte subsets. In human OSCC, advanced-stage tumors showed a significant reduction in CD31 mRNA and von Willebrand factor-positive vessels. Low PDGFR-ß expression was related to a shorter disease-free survival time, while NG2 mRNA overexpression was associated with a reduction in overall survival, consistent with the TCGA data. Herein, oral carcinogenesis resulted in an increase in NG2+ pericytes, which negatively affected survival outcomes.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Camundongos , Humanos , Animais , Pericitos/metabolismo , Carcinoma de Células Escamosas/metabolismo , Nestina/metabolismo , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Camundongos Transgênicos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Carcinogênese/patologia , Neoplasias de Cabeça e Pescoço/patologia , RNA Mensageiro/metabolismo
17.
J Appl Oral Sci ; 31: e20220489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37075387

RESUMO

OBJECTIVE: This study aimed to evaluate neuronal markers in stromal cells from human exfoliated deciduous teeth (SHED) and standardize the isolation and characterization of those cells. METHODOLOGY: Healthy primary teeth were collected from children. The cells were isolated by enzymatic digestion with collagenase. By following the International Society for Cell and Gene Therapy (ISCT) guidelines, SHED were characterized by flow cytometry and differentiated into osteogenic, adipogenic, and chondrogenic lineages. Colony-forming unit-fibroblasts (CFU-F) were performed to assess these cells' potential and efficiency. To clarify the neuronal potential of SHED, the expression of nestin and ßIII-tubulin were examined by immunofluorescence and SOX1, SOX2, GFAP, and doublecortin (DCX), nestin, CD56, and CD146 by flow cytometry. RESULTS: SHED showed mesenchymal stromal cells characteristics, such as adhesion to plastic, positive immunophenotypic profile for CD29, CD44, CD73, CD90, CD105, and CD166 markers, reduced expression for CD14, CD19, CD34, CD45, HLA-DR, and differentiation in three lineages confirmed by staining and gene expression for adipogenic differentiation. The average efficiency of colony formation was 16.69%. SHED expressed the neuronal markers nestin and ßIII-tubulin; the fluorescent signal intensity was significantly higher in ßIII-tubulin (p<0.0001) compared to nestin. Moreover, SHED expressed DCX, GFAP, nestin, SOX1, SOX2, CD56, CD146, and CD271. Therefore, SHED had a potential for neuronal lineage even without induction with culture medium and specific factors. CONCLUSION: SHEDs may be a new therapeutic strategy for regenerating and repairing neuronal cells and tissues.


Assuntos
Células-Tronco Mesenquimais , Tubulina (Proteína) , Criança , Humanos , Nestina/metabolismo , Tubulina (Proteína)/metabolismo , Antígeno CD146/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Dente Decíduo , Células Cultivadas , Células Estromais
18.
Res Vet Sci ; 159: 11-18, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060838

RESUMO

Currently, treatment for peripheral nerve injuries in horses primarily relies upon physical therapy and anti-inflammatory drugs. In humans, various treatments using mesenchymal stem cells (MSCs) are being attempted. Therefore, in this study, Schwann-like cell differentiation cultures of equine MSCs were prepared using fetal bovine serum (FBS) and equine platelet lysate (ePL). ePL increased the platelet count to 1 × 106/µl, the optimal concentration for culture. In both groups, an elongated morphology at both ends, characteristic of Schwann cells, was observed under the microscope. Real-time PCR analysis of the expression levels of neuronal markers showed that the ePL group tended to express higher levels of Nestin, Musashi1, and Pax3 than the FBS group. p75 was expressed at low levels in both groups. Immunostaining results showed localization of Nestin in both groups of differentiated cells, but the positive cell rate was significantly higher in the ePL group than in the FBS group. Overall, the ePL gro showed good results for Schwann-like cell differentiation, which may be useful for future use in the treatment of equine motor neuron disease. This knowledge could be applied translationaly in the treatment of amyotrophic lateral sclerosis in humans.Overall, the ePL group showed good results for Schwann-like cell differentiation, which may be useful for future use in the treatment of equine motor neuron disease and in the treatment of amyotrophic lateral sclerosis in humans.


Assuntos
Esclerose Amiotrófica Lateral , Doenças dos Cavalos , Células-Tronco Mesenquimais , Humanos , Animais , Cavalos , Nestina/metabolismo , Nestina/farmacologia , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/veterinária , Medula Óssea , Diferenciação Celular/fisiologia , Células Cultivadas , Doenças dos Cavalos/terapia , Doenças dos Cavalos/metabolismo
19.
Biomed Pharmacother ; 162: 114613, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001179

RESUMO

Adult neurogenesis is a process in which the adult neural stem cells produce newborn neurons that are implicated in terms of learning and memory. Methotrexate (MTX) is a chemotherapeutic drug, which has a negative effect on memory and hippocampal neurogenesis in animal models. Metformin is an antidiabetic drug with strong antioxidant capacities. We found that metformin ameliorates MTX induced deteriorations of memory and hippocampal neurogenesis in adult rats. In this study, we focus to investigate neural stem cells, biomarkers of apoptosis, and the protein for synaptogenesis, which involves in the transcription factors of the hippocampus in rats that received metformin and MTX. Male Sprague-Dawley rats were composed of control, MTX, metformin, and MTX+metformin groups. MTX (75 mg/kg, i.v.) was given on days 7 and 14, whereas metformin (200 mg/kg, i.p.) was given for 14 days. Hippocampal neural stem cells in the subgranular zone (SGZ) were quantified using immunofluorescence staining of Sox2 and nestin. Protein expression including PSD95, Casepase-3, Bax, Bcl-2, CREB, and pCREB were determined using Western blotting. MTX-treated rats displayed decreases in Sox2 and nestin-positive cells in the SGZ. Increases in Caspase-3 and Bax levels and decreases in PSD95, Bcl-2, CREB, and pCREB protein expressions in the hippocampus were also detected. However, these negative impacts of MTX were ameliorated by co-treatment with metformin. These consequences postulate that metformin has a potential to increase neural stem cells, synaptic plasticity, decreased apoptotic activities, and transcription factors, resulting in upregulation of hippocampal neurogenesis in MTX-treated rats.


Assuntos
Metformina , Células-Tronco Neurais , Ratos , Animais , Masculino , Metotrexato/farmacologia , Nestina/metabolismo , Ratos Sprague-Dawley , Metformina/farmacologia , Proteína X Associada a bcl-2/metabolismo , Hipocampo , Células-Tronco Neurais/metabolismo , Neurogênese , Fatores de Transcrição/metabolismo
20.
Brain Tumor Pathol ; 40(2): 109-123, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36892668

RESUMO

Pilocytic astrocytomas (PAs) are benign tumors. However, clinically aggressive PAs despite benign histology have been reported, and histological and molecular risk factors for prognosis have not been elucidated. 38 PAs were studied for clinical, histological, and molecular factors, including tumor location, extent of resection, post-operative treatment, glioma-associated molecules (IDH1/2, ATRX, BRAF, FGFR1, PIK3CA, H3F3A, p53, VEGF, Nestin, PD-1/PD-L1), CDKN2A/B deletion, and chromosomal number aberrations, to see if there is any correlation with patient's progression-free survival (PFS). Brainstem/spinal location, extent of resection and post-operative treatment, and VEGF-A, Nestin and PD-L1 expression, copy number gain of chromosome 7q or 19, TP53 mutation were significantly associated with shorter PFS. None of the histological parameters was associated with PFS. Multivariate analyses demonstrated that high Nestin expression, gain of 7q or 19, and extent of removal were independently predictive for early tumor recurrence. The brainstem/spinal PAs appeared distinct from those in the other sites in terms of molecular characteristics. Clinically aggressive PAs despite benign histology exhibited high Nestin expression. Brainstem/spinal location, extent of resection and some molecular factors including Nestin expression and gains of 7q and 19, rather than histological parameters, may be associated with early tumor recurrence in PAs.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Humanos , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia/genética , Nestina/genética , Nestina/metabolismo , Astrocitoma/patologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...